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We construct the effective Hamiltonian describing the motion of electrons in
compositionally graded crystals which is valid throughout a given energy band and
part way into the gaps. The effective Hamiltonian, constructed from the band
structures of uniform crystals, also includes the effects of a slowly varying ap-
plied scalar potential U(r). Near the edges of a nondegenerate band, this effec-
tive Hamiltonian reduces to an effective mass Hamiltonian with position depen-
dent mass (one of several forms previously appearing in the literature): H.g =
%p.-(m—.l(;s)”pj + &(r) + U(r), where £(r) is the energy of the band edge as a func-
tion of position. The analogous effective mass Hamiltonian for degenerate bands is
also derived. Next, we examine more general states—not restricted to the vicinity
of a band edge—in crystals with composition and applied potential variation in
one direction. We obtain a WKB-type solution for the envelope functions, as well

as the appropriate turning point connection rules.




In recent years, the ability to fabricate semiconductor nanostructures with highly ¢.n-
trolled variable chemical composition has led to a renewed interest in the physics of elec-
tx:gw:;jnahearly periodic fields and at interfaces. In this Letter we present some results of an
ongdf‘ri’.g‘ixi;;.éstigation into this subject: (i) First, an effective Hamiltonian H is constructed
that describes the behavior of electrons in a semiconductor whose composition has a slow
spatia] variation—slow enough so the concept of a local “band” is well defined. This will
be the case when the length scale over which the composition varies is much larger than
a lattice constant. The accuracy of this effective Hamiltonian depends only on the com-
position gradient—it is valid throughout a given energy band and part way into the gaps.
(#5) Second, we use this effective Hamiltonian to (a) derive effective mass Hamiltonians
valid near the edges of simple and degenerate bands (settling a controversy in the litera-
ture (1-11]), and (b) derive a WKB-type envelope function and associated turning point
connection rules for states, not necessarily near a band edge, in crystals with composition

and applied potential variation in one direction.

Consider first a random alloy AcBj_. with a spatially uniform composition charac-
terized by c. Any particular sample, J, will have a non-periodic single-particle potential
V;(r, c) due to the particular positions of the type A and B atoms. We now define a periodic
potential, V(r,c) = (Vi(r,c)), where ( ) represents the ensemble average over all atomic
configurations having a fraction ¢ of type A atoms. This approximation is similar to the
virtual crystal approximation [12], a linear interpolation between V(r,0) and V(r,1). We
assume the knowledge of the band structures E,(k,c) associated with the periodic poten-
tials V(r,c). Next consider a sample with a composition ¢(r) varying slowly on the scale
of a lattice constant. We shall call V (r,c(r)) the nearly periodic potential and En(k, ¢(r))
the local band structure of the alloy. In the future we hope to return to the effects of the
deviation from near periodicity present in any particular sample, which causes electron

scattering.




For simplicity, we consider a monatomic Bravais lattice 1 = Zgzl {b?. where the
b* are the three smallest primitive lattice vectors. We assume that the primitive lattice
vectors b® are independent of c. Most of the results we will present are valid for arbitrary

crystal structures—the places where the Bravais lattice assumption is explicitly used will

be noted.

I Effective Hamiltonian.—Let H be the Hamiltonian for an electron in a crystal with
a slowly varying composition ¢(r), and let U(r) be a slowly varying applied potential. We

expand the Schrodinger equation in a generalized Wannier function (GWF) basis [13,14]:

Z ((alnu‘H|al’n’u'> + (alny‘U|alln1yl>)§p1yl =F ‘b;w. (1)

llnl V,

The GWF's |a},,) in a nearly periodic potential are labeled by a band index n, a branch
index v if the band is composite, and a lattice vector 1 about which the function is cen-
tered. They have the same completeness, orthonormality (@jny|aim/y) = 81 Snn 6uu,
band-diagonality (ajn,|H|ayny') = npi(ainy [H|ayn, ), and localization properties as the
standard Wannier function (WF) in a periodic potential. The eigenvectors $* of (1) de-
termine the eigenfunctions in the coordinate representation: ¥(r) = 3 ), ®7 o (r - 1),

where a'(r — 1) = (rla),, ).

| The exact matrix elements in (1), of course, are unknown. We shall show that we
can approximate the matrix elements of H by using the local band structure—the pre-
cise forms of the Hamiltonian H and GWFs qf'¥(r — 1) are not needed. Consider first
the matrix elements of the Hamiltonian H. for an electron in a crystal with a uniform
composition c. For a nondegenerate band n, in the standard WF basis, (af; c|Hc|a‘1’,; c) =
% [ d3k E(k,c) e’ (1-1) Here v is the Brillouin zone (BZ) volume and the integral is over
the first BZ. The matrix elements in the graded crystal depend on the composition of the

crystal near the sites 1 and V. Therefore, we can approximate the exact (a;|H|ay) by

1 ' il (l-t
=t [ P Bk e) KO @
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This defines our effective Hamiltonian H for nondegenerate bands. Although band indices
have been suppressed, (2) is to be understood to be exactly band-diagonal. H is manifestly
Hermitian, and since E(k,c) = E(-k,c) for a given c, it is also real. The form we have
chosen for H is not unique—alternate forms, for example 1 [ d3k E(k, 5@):;_(!)) etk-(1-1)
differ from (2) by terms of order 2. Here ¢ = b|Vc| is a dimensionless small parameter
characterizing the small gradient in ¢(r), and b is the average magnitude of the three b®.
In general, the errors in (2) are of order ¢, the change in ¢ over a unit cell, in contrast to
errors of the order of the change in ¢ over the entire sample if a single mean ;:omposition
were used. In a study to be published [14], we have shown that for a Bravais lattice the
exact (aj|H|ay) are real, from which it follows that the (aj|H|ay) have no parts of order ;
hence H = H(1 + O(e?)).

For a degenerate band n with branches v, the effective Hamiltonian is defined similarly.
First note that in a uniform crystal, the energy bands E¥(k, c) may be obtained from the
matrix D*V'(k,c) = 21 (a‘l’y;c|Hc|a‘l’+I’y,;c) e'ik'r, whose eigenvalues are E¥(k,c) [15].
Converesly, if EV(k, c) is known from experiment or from a band structure calculation, the
matrix D can be determined by the requirement that its eigenvalues agree with the known
E¥Y(k,c). In practice a small number of independent matrix elements (a],; cchla; s c)
(on-site, nearest neighbor ...) in D will be sufficient. The matrix D is not unique, since
the Wannier functions |aj, ; c) are not unique; however any matrix D yielding the correct
energy bands is acceptable. In terms of the matrix D, the effective Hamiltonian for a

degenerate band may be written as
My = ! / d*k DYV (k,c(14y)) ek (-1, (3)
v

In general, H = H (1 + O(¢)) for a degenerate band.

Since the external potential U(r) in (1) is assumed to be slowly varying, (ajn, |Ulaypn,) =
U(1) 81y6nn'8y,,. In general, the errors in this approximation are O(y) + O(ey), where
4
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v = I is a dimensionless small parameter characterizing the small gradient in {'(r).

and W(r) is the local band width. To see this, note that the relation is exact when v = 0,
but has O(7) errors even in a uniform crystal. However, in a Bravais lattice (and in other
crystal structures with inversion symmetry about the midpoints between the lattice sites),
there are no O(y) errors, but rather O(v?) errors instead. Therefore, Eq. (1) for the nth

band becomes

Y np ef +UWS) = E &}, (4)

1y
with errors O(72) + O(ey), plus O(e?) errors for a simple band in a Bravais lattice or
O(e) errors otherwise. Under the stated conditions of slowly varying U(r) and c(r), the
solutions of the discrete linear equations (4) provide a complete description of the behavior

of electrons associated with a given band. In what follows, we apply (4) to two special

cases.

Ila. Effective mass Hamiltonians.—We now show that near a band edge, H reduces to
an effective mass Hamiltonian [16,17] with position dependent mass. Consider first the case
where E is near the minimum of a nondegenerate band, that minimum occurring at the
center of the BZ of the local band structure, independent of composition. In this regime,
the WF amplitudes &) are slowly varying in space. Let F(r) be a smooth interpolating
function passing exactly through the values 9| at each site: F (r)h = &;. The definition of
F for all r will be given below; for now we assume that F has continuous first and second
derivatives. Equation (4) can then be extended to the continuum by using the definition
(2) of H for nondegenerate bands, Taylor expanding F' to second order, and noting that

E(k,c(1)) = Ty Hy,geos(e 1) + O(e?). This leads to

1 8%E (k, c(r))
- Vil —————+ ; -FE ~
[ 2vl< ak‘ak" )k-_-ovj + E(01 C(r)) + U(r) F(r)ll 0’ (5)
with errors O(y2) + O(ey) + O(e?) + O(en’) + O(n?*), assuming a Bravais lattice. Here
n= blVF| is a dimensionless small parameter characterizing the slow variation of F, and

5
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the first termin (5) involves the local effective mass tensor (m—'l(ﬁ)z) = h~2(6 E(‘k,:_()r e
Note that we have not performed an ad hoc symmetrization in (5). Equation (3) holds at
each lattice site 1. It involves the continuous envelope function F(r) only through its value

and its first and second derivatives at r = 1. F(r) is now defined for all r by requiring it

to satisfy (Heﬁ- — E)F = 0 exactly, where

.y
Hg = 5 Vi(m‘l(t)>ijvj + &(r) + U(r), (6)

along with the boundary conditions of the original problem. Here &£(r) is tﬁe energy of
the local band edge. The effective mass Hamiltonian (6) also applies to states near the
top of the band—in this case £(r) corresponds to the energy of the local band maximum.
Solving the eigenvalue problem (Heg — E) F = 0 yields eigenfunctions F(1) and eigenvalues
E equal to the exact values apart from the errors quoted in (5). Alternative forms of
the kinetic energy term in H,g, differing by O(¢?) terms are (in one dimension) Teg =
%(pzm—lt + lepz), Tg = é#pzv}n—_, and so forth. These kinetic terms are all equivalent
when their accuracy is considered, a point which seems to have been overlooked in the

literature [1-11].

* An effective mass Hamiltonian for degenerate bands may be derived similarly. For
simplicity, we again assume that the extremum occurs at the BZ center. Defining a con-

tinuous envelope function F¥(r) for the vth branch of band n results in a set of coupled

differential equations Y, ( :&-” — E§*Y')F¥ " = 0 for the F¥(r). We find

. 62 [)UV’(‘ C( )) ' ,
vv' 2v_ yCT \v v Fidd 7

. 2 3 4 . 8 D" (k,c(x
with errors O(72) + O(ey) + O(¢) + O(en®) + O(n*). The quantity (—mc%x;@)kzo
has a well known form given in Ref. 15. Our results (6) and (7) agree with perturbative

calculations in the ¢ < 1 limit [3-5]; however the present derivations are free of this

assumption.




IIb. WKB approximaticn for crystals.—We now obtain a WKB-type solution to : |
for a nondegenerate band, whose validity is not limited to the vicinity of a band edge. W=
assume that the composition and external potential vary in the z direction only. Then.
in obvious notation, the WF amplitudes may be written as d) = eikL’llFl, where k, 1s a

constant, and (4) reduces to
Y hi Fa+UW) F=E R (8)
[

where h“ +[(k 1) = Zh H“ o e‘klh, The local band structure may be written as
E(k,c(l)) = g Ryl e**! where we have suppressed the dependence on k,. Now define

a local wavenumber k(z) by
E(k(z),c(2)) + U(z) = E. (9)

There may be more than one solution k(z) to (9); the following analysis applies to each

solution. The z component of the local velocity is defined as v(z) = (QE(_;;“ED,) h=h(s) A

1}
, . L [ k(2)dz .
WKB solution to (8) is Fj = 7500 e f'o , with O(e?) + O((b%F')?) + O(b2k'¢) errors,
as can be verified by direct substitution. When written in terms of the continuous variable
z, the envelope function is
1 ei f:o k(z')dz"

Fe) = JaETa

where k and E are related through the band structure and 9E/Ok is understood to be a

(10)

function of position. This is the appropriate generalization of the conventional WKB wave

function to electrons in uniform or slowly graded crystals.

In analogy with conventional WKB theory, we now calculate the connection rules by
solving Eq. (4) near a turning point where the energy E is equal to the total energy of
the band edge. k, is a fixed parameter and will not be written. Since we are interested in

the regime near the band edge, we may use the effective mass Hamiltonian with position

7




dependent effective mass (6). in one dimension. Let V(z) = &(z) — ['(z) be the 1. raj
energy of a band minimum; the turning point z defined by V(z9) = E. We then shift 1he

z origin to the turning point and expand the inverse effective mass and V linearly about

the turning point:

1
m*(2)

1
~ —(1-Bz) and V(z)xVp+ Vyz (11)
My
For definiteness, we consider the case where Vo' > 0; the case where Vé < 0 is analogous.
Combining (12) with (6) yields [ - ad;, + 7z + ﬁ(za‘% + %)]F(z) = 0, where 7 = 2;_"",11‘/0'
Next we introduce a stretched coordinate § = ﬁ-’iz; then

[—;{—25+£+A({§2-+%)]F(£)=0, (12)

where A = ﬂ:f‘%.

In the following we shall assume that A <« 1, which can be shown to be equivalent
to the assumption that the fractional change of "—1..- is small over the turning point region

L= "7’%. Also, as in conventional WKB theory, the condition -‘&;L <« 1 must be satisfied.
o

We first solve (12) for the usual case, where ) is small. Asymptotic expansions of F(¢)
as { — +oo will be used to infer the connection formulae. The solution to (12) may be
written as a contour integral F(£) = ¢ [p e€%g(s)ds in the complex s-plane, where c is a
coﬁstant, g(s) = e_é’s[l ~A(3s? - L) + O()?), and the endpoints s; and ¢ of ' satisfy
ZE’". < arg(s;) < 3-} and 3 < arg(ss) < %’5 as |s| — oo [18]. Saddlepoint approximations

then yield the following asymptotic solutions (to order A):

F(£) ~ %5-%5%5;[1—.‘5@] as £ — 400 (13a)

2 1.8 2 3
F©) ~ la-binCigt + D= DigdearGie + D)) w0 6o ()
3 4 5 3 4
where we have used ¢ = (21r%i)‘1. Near the turning point, k = "yé 1":'52 and v =

27’1“§\/ AEZ — £. Then (13) implies the connection rules

OE 1|aE

{—— -icos(/lkldz - %4'-) - 3|7

1
-1
e J |kids
ak
8

(14)




for the envelope functions. The derivation of (14) 1s valid for small A\. A derivation -f
the connection rules up to A = 1 is also possible, by performing an analytic continua-
tion and passing around the turning point in the complex z-plane, remaining everywhere
in the region where (10) is valid. We have also carried out this calculation and have
obtained precisely the same connection rules (14). Therefore, the envelope function con-
nection rules take the form (14), which are similar to the standard WKB connection rules

k|~ 4 cos( [ lkldz — §) «— Lik|=3e=J ikldz

The WKB envelope functions and the turning point connection rules immediately yield

the bound state quantization condition

1 1
5 k(z) dz=n+§ (15)
for each solution k(z) of (9). Here n is a nonnegative integer labeling the bound state, and

p(z) = hk(z) is given by E(k(z),k,,c(z)) + U(z) = E.

Equation (15) provides an efficient means to calculate energy levels—including high
lying ones—in a slowly graded (e.g. parabolic) quantum well. Let S(E) = ,1; § k(z) dz be
the dimensionless action associated with the classical trajectory of an electron of energy
E, the z-component of that trajectory forming a closed path, for some fixed value of k;, .
Simple numerical integration yields S(E) for each E, for any local band structure and
confining potential. A plot of S versus E yields eigenvalues En, when S(Ep) = n + %,
and the density of levels (8S/0E)~!. The complete spectrum is obtained by including the

energy levels corresponding to each k(z) [19].

In Fig. 1, we apply (15) to the calculation of single-electron energy levels in a slowly
graded Al.Ga;_.As parabolic quantum well [20], with the growth axis in the (100) direc-
tion. The curvature of the parabolic band edge has been chosen so that the energy level
spacing at the bottom of the well is 10 meV. The band structure we use consists of a linear

interpolation between the band structure of GaAs and that of AlAs, and we have chosen

9




k. = 0. The dashed line results from the application of the effective mass approximaticn
(6) with uniform effective mass m* = 0.067 m. of GaAs; it shows the expected umform
level spacing throughout the quantum well. The solid curve deviates from the dashed curve

because (15) uses the true band structure of the material and accounts for the composition

gradient [19).

This work was supported by the NSF through Grant No. DMR90-01502, by the U.S.
Office of Naval Research through Grant No. N00014-89-J-1530, and by the NSF Science

and Technology Center for Quantized Electronic Structures (QUEST) through Grant No.
DMR91-20007.
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FIGURE CAPTION

FIG.1. Energy level spacingin a AlcGa;._.As parabolic quantum well, slowly graded
from c = 0 at the center of the well to ¢ = 1 at the edges. The depth of the quantum
well is 1.45 eV, and the width has been chosen to that the energy level spacing at the
bottom of the well is 10 meV. The level spacing abruptly decreases at 520 meV due to
the presence of the X-valley, and again decreases at 870 meV due to the appearance

of the next band.
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